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The scrutiny of the complete mean field Green function solution [1] of the effective two-dimensional two-band Hubbard 
model of the high-Tc superconductivity in cuprates [2] unveils three important features of this model. (i) While the conjecture 
of the spin-charge separation in cuprates, repeatedly stressed by P.W. Anderson, is at variance with the existence of the 
Fermi surface in these compounds, the main findings of the present investigation point towards its actual occurrence and to 
an alternative explanation. (ii) The two-band Hubbard model recovers the superconducting state as a result of the 
minimization of the kinetic energy of the system, in agreement with ARPES data. (iii) The anomalous pairing correlations 
may be consistently reformulated in terms of localized Cooper pairs both for the hole-doped and the electron-doped 
cuprates.  
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1.  Introduction 
 
The present paper is devoted to the discussion of the 

spin-charge separation relevance of some recently reported 
results [1] on an effective two-band Hubbard model of the 
high-Tc superconductivity in cuprates [2].  

The spin-charge separation is known to be a 
dimensionality induced effect on the behaviour of the 
systems of interacting fermions. In three-dimensional 
systems, the occurrence of the interaction does not result 
in fundamental change of the single particle behaviour. 
Central to the Fermi-liquid theory describing this case is 
the preservation of the Fermi surface concept emerging 
from the Fermi exclusion principle for non-interacting 
fermions. The low-energy particle and hole excitations 
retain the key single particle features.  

At the contrary, in the one-dimensional and quasi-one-
dimensional systems of interacting fermions the Fermi 
surface concept does not survive. Only collective many-
body excitations are present within this new state of the 
matter, called a Luttinger liquid. The collective modes of a 
Luttinger liquid separate into spin ("spinon") and charge 
("holon") sectors that propagate with different collective-
mode velocities. In the limit of very strong interactions, an 
even more puzzling behaviour, the spin-incoherent 
Luttinger liquid occurs [3].  

The lamellar structure of the high-Tc cuprates has 
pointed to a quasi-two-dimensional behaviour, within 
which the CuO2 planes play the essential role. While there 

are no general reasons to assume the failure of the Fermi 
surface concept in the two-dimensional case, in an early 
paper on high-Tc, arguing that the cuprates are essentially 
Mott-Hubbard insulators, Anderson [4] conjectured the 

occurrence of the spin-charge separation as a basic feature 
of these systems. Later on, the scrutiny of the accumulated 
evidence offered him further heuristic arguments 
concerning the role of the spin-charge separation in the 
understanding of the various phases of the high-Tc 
cuprates [5]. During the two decades elapsed since its first 
formulation by Anderson, the spin-charge separation 
scenario has become the source of various "spinon-holon", 
"fractionalization", etc., theoretical models of the high-Tc 
superconductivity in cuprates.  

The motivation for the derivation of the effective two-
band Hubbard model [2] was quite different. We may trace 
its origins in another Anderson’s idea in his paper [4], 
namely that the essential physics of the cuprates would be 
captured by a one-band Hubbard model.  

Technically, however, the two-band Hubbard model 
emerged as a simplification of the more comprehensive p-
d model [6], using a reduction procedure based on cell-
cluster perturbation theory [7,8], consistent with the basic 
features evidenced by the study of the high-Tc cuprates 
(see, e.g., [9] for a review): (i) the occurrence of the Fermi 
surface in cuprates is a firmly established experimental 
fact; (ii) the cuprates are, in fact, charge-transfer insulators 
[11], which are characterized by a strong 
antiferromagnetic interaction inside the CuO2 planes, 
while showing different band splittings in comparison with 
the Mott-Hubbard insulators; (iii) the nearest to the Fermi 
level stay the upper Hubbard band (single particle copper 

22 yx
d

−
 states) and the Zhang-Rice singlet (doubly 

occupied states in the direct space, generated [12] by a 
specific hierarchy of the ion-ion interactions); (iv) the 
cuprates exhibit hopping conduction, with an extremely 
low density of the free charge carriers.  
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Therefore, Plakida et al. [2] concluded that the 
simplification of the p-d model should retain precisely the 
abovementioned two band contributions to an effective 
Hamiltonian formulated in terms of Hubbard operators.  

Using the equation of motion method for 
thermodynamic Green functions (GF) [13], the effective 
two-band Hubbard model was shown [14] to generate both 
the exchange and the spin fluctuation mechanisms 
currently assumed to result in superconducting pairing in 
cuprates and to be able [15] to produce electronic spectra 
of the normal state in agreement with ARPES data.  

In [1] we derived the complete GF solution of the 
effective two-band Hubbard model within the generalized 
mean field approxi mation (GMFA), based on the rigorous 
implementation of consequences following both from the 
system symmetries (the invariance to translations and to 
spin reversal) and from the Hubbard operator algebra. This 
investigation has evidenced the existence of invariance 
properties of several statistical averages, as well as the 
exact vanishing of other ones. These results will be shown 
in this paper to shed new light on the spin-charge 
separation conjectured by P.W. Anderson.  

The spin-charge correlation functions associated to 
normal hopping processes are found to vanish identically, 
while the GMFA pairing shows a unique correlation 
function relating the singlet destruction/creation processes 
with the surrounding charge density. This charge-charge 
pairing mechanism is shown to be equivalent to the 
occurrence of doping related correlations of Cooper pairs 
which are localized inside the hopping radius around the 
singlet destruction/creation event. Therefore, a kinetic 
energy minimization process is responsible for the 
occurrence of the superconducting phase inside the model, 
in agreement with ARPES data [9,10].  

The paper is organized as follows. The Hamiltonian of 
the model is described in Sec. II. The main results of the 
GMFA-GF solution of the model are collected in Sec. III. 
The occurrence of doping related localized Cooper pairs is 
discussed in Sec. IV. The concluding section V 
summarizes the main results and points to open questions.  

 
 

2.  Model hamiltonian 
 
The individual constituents of the model are quasi-

particles (holes) that are quasi-localized at the sites i of an 
infinite two-dimensional array, the lattice constants of 
which, ax and ay, are defined by those of the underlying 
CuO2 plane of the crystal lattice. In [2], a square array 
(ax=ay=a=1) was assumed. For the 123 compounds, the 
array is a rectangle which is very slightly different from a 
square (|ax−ay|/max(ax,ay)≤1).  

Significant simplification of the algebraic calculations 
asked by the derivation of the GMFA-GF solution was 
obtained [1] through the definition of the Hubbard 1-forms 
of labels (αβ,γη),  
 

n
mi

m
im

n
i XX γαβγαβ ντ ∑

≠

=
1

,
,1                     (1) 

 

The Hubbard 1-form (1) carries, at the site i, the 
overall effect of the hopping processes described by the 
pair of Hubbard operators ( γηαβ

mi XX , ) at the lattice sites 
(i,m) related by non-vanishing hopping parameters νim. 
Since the numerical coefficients νim stem from the overlap 
of the wave functions of the holes placed at the i-th and m-
th lattice sites respectively, their values decrease (non-
exponentially) with the distance |rm−ri| between the two 
lattice sites. Here we take them for phenomenological 
parameters, carrying non-vanishing characteristic values 
within the first three coordination spheres of the lattice 
node i. From [2] and [5], the following typical values may 
be inferred: for the nearest neighbouring m-sites (the first 
coordination sphere), νim∼ν1=0.14; for the next nearest 
neighbouring m-sites (the second coordination sphere), 
νim∼ν2=−0.13ν1, while for the m-sites located at the third 
coordination sphere, νim∼ν3=0.16ν1.  

Using (1), the Hamiltonian of the effective two-band 
Hubbard model [2] was rewritten in the form [1]  
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2) 
 
where the spin projection values in the sums over σ are 
σ=±1/2, σσ −= =−σ.  

The Hubbard operators (HOs) αβ
iX =|iα〉〈iβ| are 

defined for the four states of the model at each lattice site 
i: |0〉 (vacuum), |σ〉=|↑〉 and |σ 〉=|↓〉 (single particle spin 
states inside the hole subband), and |2〉=|↑↓〉 (singlet state 
inside the singlet subband).  

The HOs may be either fermionic or bosonic. There 
are processes (e.g., hole creation/annihilation, interband 
transitions) which are described by fermionic HOs. 
Processes like singlet creation/annihilation, or the 
characterization of the charge and spin densities are 
described in terms of bosonic HOs. As a consequence, the 
HO algebra is very complicated. Two fermionic HOs 
anticommute, { γηαβ

ji XX , }=δij(δβγ αη
iX +δηα αβ

iX ), 
while any other pair of HOs satisfies the commutation 
relations, { γηαβ

ji XX , }=δij(δβγ αη
iX -δηα αβ

iX ).At every 

lattice site i, the multiplication rule αη
βγ

γηαβ δ iii XXX =  
and the completeness relation 

12200 =+++ iiii XXXX σσσσ  hold. The latter secures 
rigorous fulfilment of the constraint of no double 
occupancy of any quantum state |iα〉.  

In (2), με −= dE ~
1  denotes the hole subband energy 

for the renormalized energy dε
~  of a d-hole and the 

chemical potential μ. The energy parameter of the singlet 
subband is E2=2E1+Δ, where Δ≈Δpd=εp−εd is an effective 
Coulomb energy Ueff corresponding to the difference 
between the two energy levels of the model.  
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The hopping energy parameters Kab=2tpdKab (a,b=1,2) 
depend on tpd, the hopping p-d integral, and on energy 
band dependent form factors Kab. The label 1 points to the 
hole subband, while 2 to the singlet subband. Inband 
(K11,K22) and interband (K21=K12) processes are present.  

The physically relevant information contained in the 
Hamiltonian (2) is extracted by the equation of motion 
method for thermodynamic Green functions. The results of 
the mean field approximation of this procedure are 
summarized in the next section.  

 
 

3.  Mean field approximation 
 
We define [16] the four component σ-Nambu 

operator,  
 

T0202 )( σσσσ
σ iiiii XXXXX =

)
          (3)  

 
where the superscript ⊺ denotes the transposition. Then 

)(ˆ 0202† σσσσ
σ iiiii XXXXX =  denotes the adjoint 

operator of X $jσ. The set of all the sixteen correlation 
functions of the pairs of Hubbard operators emerging from 
X $iσ(t) and †ˆ

σjX (t') can be written in terms of the retarded 

and advanced 4×4 GF matrices (in Zubarev notation [13])  
 

{ } ,)'(ˆ),(ˆ)'()'(~ † tXtXttittG ji
r
ij σσσ θ −−=−  

{ } ,)'(ˆ),(ˆ)'()'(~ † tXtXttittG ji
r
ij σσσ θ −=−          (4) 

 
where 〈L〉 denotes the statistical average over the Gibbs 
grand canonical ensemble.  

The GMFA-GF solution resulting from (4) can be 
written in compact form in the (q,ω)-representation,  
 

[ ] χωχχω σσ
~)(~~~),(~ 10 −

−= qAqG              (5) 

{ }†ˆ,ˆ~
σσχ ii XX= ,                                      (6) 

ijij
r

ij
ri rrrAeqA

ij

ijq −==∑ ,~)(~
σσ               (7) 

{ } ],ˆ[ˆ,ˆ,ˆ~ † HXZXZA iijiij σσσσσ ==             (8) 

 
Here, ω denotes, in the complex energy plane, the 

value ω+iε for retarded GF, and ω−iε for advanced GF, 
ε=0+.  

For the alternative σ -Nambu operator,  
 

T0202 )( σσσσ
σ iiiii XXXXX =

)
             (9) 

GMFA-GF results are obtained [1] in terms of the σ �-

frequency matrix }ˆ],,ˆ{[~ †
σσσ jiij XHXA =  

The elements of the frequency matrices σijA~  and σijA~  
have been found to share a same algebraic structure,  
 

νϕλμνϕλμνϕλμ νδδ ,, )1(},{ ijijijiijii TCXZ −+= , 

(10) 
where the expressions of the specific one-site terms 

νϕλμ ,
iC  and two-site terms νϕλμ ,

ijT  have been rigorously 
simplified by making use of the translation invariance of 
the lattice and the Hubbard operator algebra.  
The calculation evidenced the occurrence of two kinds of 
particle number operators: related to the singlet subband,  
 

22
iii XXn += σσ

σ , 22
iii XXn += σσ

σ     (11) 
  
and related to the hole subband,  
 

00
ii

h
i XXn += σσ
σ , 00

ii
h
i XXn += σσ
σ          (12) 

 
The completeness relation implies  

 
1=+=+ h

ii
h
ii nnnn σσσσ            (13) 

 
The total particle number operators at site i are  

 
 

 h
i

h
i

h
iiii nnNnnN σσσσ +=+= ,       (14) 

 
Due to the spin reversal invariance of the physical 

system, the statistical averages calculated from σ-Nambu 
and σ -Nambu operators respectively, have resulted in the 
following kinds of relationships:  

(i) The average occupation numbers are independent 
on the spin projection σ and on the site label i,  
 

2χσσ == ii nn  

21 1 χχσσ
−=== h

i
h nn
i

 

At zero doping level in hole doped cuprates, χ1=1, 
χ2=0, point to the fact that the hole subband is full, while 
the singlet subband is empty (half-filling). Under a hole 
doping rate δ, χ2=δ, χ1=1−δ, and the chemical potential is 
shifted towards a new equilibrium value.  

(ii) The one-site singlet destruction or creation 
processes result in identically vanishing statistical 
averages, 〈 02

iX 〉=〈 20
iX 〉=0. As a consequence, the χ % 

matrix (6) is diagonal, with non-vanishing matrix elements 
given by χ1 and χ2, Eq. (15).  

(iii) The normal one-site matrix elements originating 
in hopping processes result in renormalization corrections 
to the energy parameters E1 and E2 of (2).  

The normal intraband hopping matrix element 
corrections are independent on the spin projection σ and 
result in identical contributions E1 and E2.  
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The normal interband hopping matrix elements 
change sign under the spin reversal σσ → .  

The emerging interband contributions to the frequency 
matrices σijA~  and σijA~  show the same σ-dependence. 
However, they result into spin-projection-independent 
hybridization effects of the hole and singlet subband 
energy levels.  

(iv) The anomalous one-site matrix elements which 
stem from the hopping processes satisfy the identity 
〈 )2,00,2 σσσσ

ii CC + 〉=0, wherefrom two conclusions 
follow. First, the anomalous one-site interband hopping 
contributions to the frequency matrix vanish identically, 
irrespective of the relationship between the lattice 
constants ax and ay. Second, the anomalous one-site 
inband hopping contributions coming from the hole and 
singlet subbands respectively are equal to each other. 
Within a square array, both of them vanish identically, 
while within a slightly deformed square array they bring 
quite small contributions to the frequency matrix.  

Therefore, the static one-site pairing is absent from 
the Hubbard model (2), such that the GMFA 
superconducting pairing cannot arise via the minimization 
of the potential energy of the system.  

(v) Both the normal and anomalous two-site terms 
〈 νϕλμ ,

ijT 〉 (10) stem from hopping processes. For any pair 
of lattice sites (i,j), they involve identically vanishing spin-
charge correlations,  
 

0== z
j

h
i

z
ji SNSN , )( σσσσ

jj
z
j XXS −=    (16) 

 
These identities point to the spin-charge separation of 

the two-site normal correlation functions, which consist 
[1] exclusively of charge-charge, spin-spin and singlet-
hopping terms.  

(vi) The spin-independence of the singlet-charge 
correlations following from 〈 σji nX 02 〉=〈 σji nX 02 〉, leads 
to a single characteristic two-site anomalous matrix 
element,  
 
 

0202
i

h
jijjiij

pair
ij XNNXX νν −==              (17) 

 
Since the singlet carries charge and no spin, (17) may 

be assumed to point to the occurrence of a static charge-
charge correlation mechanism of superconductivity within 
the model (2).  
 

 
4. Localized cooper pairs 

 
Rigorous mathematical transformations which rule out 

exponentially small quantities while preserving all the 
relevant contributions to the anomalous two-site 
correlation functions [1], yield for hole-doped cuprates 
(i≠j)  

∑Δ
≈

σ

σστσνχ jiij
pair

ij NK 2,2
,1
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while for the electron-doped cuprates (i≠j)  
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σ
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h
jij

pair
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Taking into account the expression (1) of γηαβτ ,

,1 i , 

these equations result into two-site (m=j≠i) and three-site 
(m≠j≠i) contributions to the superconducting pairing. If an 
approximate decoupling of the three-site terms is 
performed following the general rule [17] that the 
fermionic components γηαβ

mi XX  should be separated 

from the bosonic components ( jN / h
jN ), we get the 

following dependence of the static superconducting 
pairing on the doping rate δ in hole-doped cuprates,  
 

])1([24 2,2
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2221 σσσσ τδδνσνχ ijiijij
pair

ij XXK
+−

Δ
≅  

(20) 
while in electron-doped cuprates:  
 

])1([24 0,0
,1

0021 σσσσ τδδνσνχ ijiijij
pair

ij XXK
+−

Δ
≅  

(21) 
These equations unveil a view on the static 

superconducting mechanism emerging from (2) which 
recovers the exchange mechanism of the t-J model in 
terms of localized Cooper pairs. These pairs involve 
neighbouring spin states found in that energy band which 
crosses the Fermi level. It is worth noting that, in the 
absence of the doping, the pairing comes from pure two-
site correlations, which, however result in zero weight in 
the frequency matrix due to the fact that the involved 
energy states are empty. With the increase of the doping, 
the terms originating in three-site correlations, which are 
proportional to δ, become increasingly important due to 
the inclusion of the whole hopping environment (i,m) 
around the i site where the singlet destruction/creation 
occurs.  

 
 
5. Conclusions   
 
A scrutiny of the complete mean field Green function 

solution [1] of the effective two-dimensional two-band 
Hubbard model of the high-Tc superconductivity in 
cuprates [2] was performed.  

Our intention was to understand whether the spin-
charge separation, repeatedly advocated by Anderson [4,5] 
to occur in cuprates, may be recovered within the present 
model or not. While the spin-charge separation conjecture 
is, strictly speaking, at variance with the existence of the 
Fermi surface in cuprates, the main findings of this 
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investigation show that the model (2) supports its actual 
occurrence in these compounds.  

The fundamental feature which results in the spin-
charge separation is the particular hierarchy of the ion-ion 
interactions yielding the Zhang-Rice singlet. While the 
singlet may decay into a hole state by single particle 
hopping, or may be created by the inverse process, there 
are direct destruction/creation singlet hopping processes 
which provide a distinct spinless boson field contribution 
to the system behaviour.  

As a consequence, the correlation of the singlet 
destruction/creation processes at a given lattice site i with 
the surrounding charge density, which provides the GMFA 
anomalous contribution to the Green functions, may be 
viewed as a charge-charge correlation induced static 
mechanism of the superconductivity within the present 
model.  

Since, on the other side, the system symmetries and 
the HO algebra result in vanishing spin-charge normal 
correlation functions, we arrive at the conclusion that the 
predictions of the model (2) result, within GMFA at least, 
in the spin-charge separation advocated by Anderson.  

Further mathematical transformations of the 
anomalous hopping correlation functions resulted, 
however, in a description of the pairing mechanism 
through the occurrence of the interacting Cooper pairs 
within the hopping related region to the i-th reference node 
where singlet destruction/creation occurred. The obtained 
formulation allows us to relate the superconducting pairing 
to the doping rate δ, equations (20) and (21).  

It is also worth mentioning that the complete absence 
of the one-site anomalous pairing, together with the 
occurrence of hopping related two-site anomalous pairing 
correlations, point to the fact that the Hubbard model (2) 
recovers the superconducting state as a result of the 
minimization of the kinetic energy of the system, in 
agreement with the ARPES data [9,10].  

An open question which deserves further attention 
concerns the investigation of the spin-charge separation 
conjecture for the full Dyson equation of the Green 
function matrix (4).  
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